

Fig. 1. Molecular structure and atomic numbering.

Fig. 2. View of crystal packing along the b axis.
Related literature. The guanidino group N atoms N 4 and N 5 interact directly with the peptide backbone O atoms O 1 and O 2 in contrast with the crystal structure
of the dihydrated form of the peptide (Ramakrishnan \& Viswamitra, 1988). The side-chain conformation of arginine has $\chi^{1}=-64.2^{\circ}$ and $\chi^{2}=-71.4^{\circ}$, predicted as a possible geometry (Ponnuswamy \& Sasisekharan, 1971) but not seen in earlier arginine crystal structures (Pandit, Seshadri \& Viswamitra, 1983; Bhat \& Vijayan, 1977).

We thank Dr T. P. Seshadri for his help during data collection and DST and DBT for financial support.

References

Bhat, T. N. \& Vidayan, M. (1977). Acta Cryst. B33, 1753-1759.
Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
iUPAC-IUB Commission on Biochemical Nomenclature (1970). J. Mol. Biol. 52, 1-17.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Pandit, J., Seshadri, T. P. \& Viswamitra, M. A. (1983). Acta Cryst. C39, 1669-1672.
Ponnuswamy, P. K. \& Sasisekharan, V. (1971). Int. J. Pept. Protein Res. 3, 9-18.
Ramakrishnan, B. \& Viswamitra, M. A. (1988). Acta Cryst. C44, 1959-1961.

Acta Cryst. (1989). C45, 824-826

The Structure of 1-Benzylidene-2,3-diphenylindene

By Christine R. A. Muchmore
The Upjohn Company, Kalamazoo, Michigan 49001, USA
and Mary Jane Heeg*
Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA

(Received 8 July 1988; accepted 8 November 1988)

Abstract. $\mathrm{C}_{28} \mathrm{H}_{20}, M_{r}=356.47, P 2_{1} / c, a=10.948$ (2), $b=19.856$ (6), $c=10.173$ (1) $\AA, \beta=117.40(1)^{\circ}, V$ $=1963.3$ (7) $\AA^{3}, Z=4, D_{x}=1.206 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)$ $=0.71073 \AA, \quad \mu=0.34 \mathrm{~cm}^{-1}, \quad F(000)=752, \quad T=$ 298 (2) K, $R=0.043$ for 2705 unique observed reflections. The indene portion of the molecule exhibits a small fold of $2.6(1)^{\circ}$ between the fused rings. Lengths and angles within the indene fragment are normal and vary according to hybridization. The five-membered ring is planar (r.m.s.d. $=0.01 \AA$) as are all six-membered

[^0]0108-2701/89/050824-03\$03.00
rings. The $\mathrm{C}=\mathrm{C}$ double bond linking the benzyl group to the five-membered ring is clearly defined by bond length $[1.345(2) \AA]$ and geometry. The benzyl group is related cis to the C atom at the fused ring juncture and oriented away from the adjacent phenyl group. Conjugation does not extend beyond the indene fragment to include the phenyl groups. All three pendent phenyl rings are canted $47-57^{\circ}$ with respect to the five-membered ring in a paddle-wheel arrangement.

Experimental. The title compound was isolated as an unexpected side product from the reaction of elemental © 1989 International Union of Crystallography
bromine with hexaphenylstannole in tetrahydrofuran at 195 K under a nitrogen atmosphere, with a yield of 30%. The reaction mechanism for the formation of this product is unknown. The compound was recrystallized and showed a sharp melting point of 459 K .

Multifaceted orange crystals, $0.4 \times 0.5 \times 0.6 \mathrm{~mm}$; Nonius CAD-4 diffractometer, monochromated Mo $K a ; \theta / 2 \theta$ scans; $3 \leq 2 \theta \leq 52^{\circ}$; lattice parameters from 25 high angle reflections ($2 \theta>20^{\circ}$); Gaussian integration absorption corrections applied with transmission coefficients $0.987-0.979 ; 0 \leq h \leq 13,0 \leq$ $k \leq 24,-12 \leq l \leq 12$; three standard reflections fluctuated 2\%; 3966 total reflections, 3842 unique, 2705 observed with $I_{o} \geq 2 \cdot 5 \sigma(I)$. Direct methods; full-matrix refinement via SHELX 76 (Sheldrick, 1976) on F 's minimizing $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$; all C atoms anisotropic; H atoms were placed in a combination of observed and calculated positions and all isotropic H temperature factors were tied to a single variable which refined to $0.077 \AA^{2}$. Number of parameters varied was 255. For observed reflections $R=0.043, w R=0.054$, $S=1.83, w=\left(\sigma_{F}\right)^{-2}$. In a final cycle: $(\Delta / \sigma)_{\text {max }}<0.01$, $(\Delta \rho)_{\text {max }}=0.16,(\Delta \rho)_{\text {min }}=-0.16 \mathrm{e} \AA^{-3}$. An empirical correction for extinction was applied: $F_{\text {corr }}=F(1-$ $0.001 x F^{2} / \sin \theta$) where x refined to 0.00759 . Neutralatom scattering factors from International Tables for X-ray Crystallography (1974). Table 1* gives the atomic coordinates and Table 2 lists bond distances and angles. Fig. 1 illustrates the geometry and labeling scheme. A diagram of the title molecule is shown below.

Related literature. Other structurally similar substituted indene molecules have been studied by Gieren \& Hahn (1979), Barnes, Paton \& Nicholls (1982) and Korp, Bernal, Watkins \& Fronczek (1982). It is interesting that the related indene, 2,3-diphenylindenone, was isolated as an unexpected side product in the reaction of 1,2,3-triphenylcyclopropene with $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}(\mathrm{CO})_{2}($ Jens \& Weiss, 1984).

* Lists of structure factors, anisotropic thermal parameters, H -atom parameters and least-squares planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51586 (17 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters

	x	y	z	$U_{\text {eq }} \dagger\left(\AA^{2}\right)$
Cl	1.1261 (2)	0.39576 (8)	0.4432 (2)	0.0386 (7)
C2	0.9830 (2)	0.41494 (8)	0.3369 (2)	0.0368 (7)
C3	0.8934 (2)	0.36918 (8)	0.3433 (2)	0.0385 (7)
C4	0.9716 (2)	0.31953 (8)	0.4587 (2)	0.0409 (7)
C5	1.1128 (2)	0.33471 (8)	0.5204 (2)	0.0402 (7)
C6	1.2086 (2)	$0 \cdot 29408$ (9)	0.6309 (2)	0.0509 (8)
C7	1.1620 (2)	$0 \cdot 24048$ (9)	0.6844 (2)	0.059 (1)
C8	1.0222 (2)	0.2276 (1)	0.6275 (2)	0.059 (1)
C9	0.9257 (2)	0.26633 (9)	0.5133 (2)	0.0515 (9)
C10	1.2369 (2)	0.42596 (8)	0.4452 (2)	0.0437 (8)
C11	1.3837 (2)	0.41142 (8)	0.5387 (2)	0.0448 (8)
C12	1.4711 (2)	0.4068 (1)	0.4740 (2)	0.060 (1)
C13	1.6101 (2)	0.3929 (1)	0.5598 (3)	0.069 (1)
C14	1.6644 (2)	0.3851 (1)	0.7104 (3)	0.068 (1)
C15	1.5797 (2)	0.3916 (1)	0.7766 (2)	0.0616 (9)
C16	1.4415 (2)	0.40500 (9)	0.6920 (2)	0.0508 (8)
C17	0.9494 (2)	0.47317 (8)	0.2356 (2)	0.0373 (7)
C18	0.8759 (2)	0.46398 (9)	0.0830 (2)	0.0452 (8)
C19	0.8422 (2)	0.5184 (1)	-0.0119 (2)	0.0563 (9)
C20	0.8823 (2)	0.5825 (1)	0.0435 (3)	0.059 (1)
C21	0.9554 (2)	$0 \cdot 59272$ (9)	$0 \cdot 1941$ (3)	0.060 (1)
C 22	0.9894 (2)	0.53839 (9)	0.2907 (2)	0.0510 (9)
C23	0.7428 (2)	0.36568 (9)	0.2481 (2)	0.0429 (7)
C24	0.6589 (2)	0.4224 (1)	0.2183 (2)	0.0544 (9)
C25	0.5183 (2)	0.4177 (1)	0.1261 (3)	0.067 (1)
C26	0.4597 (2)	0.3564 (1)	0.0636 (3)	0.075 (1)
C27	0.5415 (2)	0.3001 (1)	0.0926 (3)	0.071 (1)
C28	$0 \cdot 6818$ (2)	$0 \cdot 3043$ (1)	$0 \cdot 1843$ (2)	0.0573 (9)

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

C1-C2	1.486 (2)	C12-C13	1.390 (3)
C1-C5	1.488 (2)	C13-C14	1.373 (2)
C1-C10	1.345 (2)	C14-C15	1.380 (2)
C2-C3	1.361 (2)	C15-C16	1.379 (3)
C2-C17	1.478 (2)	C17-C18	1.394 (2)
C3-C4	1.469 (2)	C17-C22	1.399 (2)
C3-C23	1.480 (2)	C18-C19	1.381 (2)
C4-C5	1.408 (2)	C19-C20	$1 \cdot 380$ (3)
C4-C9	1.391 (2)	C20-C21	1.378 (2)
C5-C6	1.389 (2)	C21-C22	1.390 (2)
C6-C7	1.394 (2)	C23-C24	1.396 (3)
C7-C8	1.389 (3)	C23-C28	1.397 (3)
C8-C9	1.388 (3)	C24-C25	1.389 (3)
C10-C11	1.471 (2)	C25-C26	1.386 (3)
C11-C12	1.391 (2)	C26-C27	1.377 (3)
C11-C16	1.393 (2)	C27-C28	1.385 (3)
C1-C2-C3	109.6 (1)	C6-C7-C8	$120 \cdot 6$ (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 17$	123.3 (1)	C7-C8-C9	121.0 (2)
C1-C5-C4	107.0(1)	C10-C11-C12	119.4 (1)
C1-C5-C6	132.9 (2)	C10-C11-C16	122.7 (1)
C1-C10-C11	129.2 (1)	C11-C12-C13	120.5 (1)
C2-C1-C5	105.5 (1)	C11-C16-C15	121.3 (1)
C2-C1-C10	122.6 (1)	C12-C11-C16	117.8 (2)
C2-C3-C4	108.6 (1)	C12-C13-C14	120.7 (2)
C2-C3-C23	127.7 (1)	C13-C14-C15	119.4 (2)
C2-C17-C18	120.4 (1)	C14-C15-C16	$120 \cdot 2$ (1)
C2-C17-C22	120.8 (1)	C17-C18-C19	120.5 (2)
C3-C2-C17	127.0 (1)	C17-C22--C21	120.1 (1)
C3-C4-C5	109.2 (1)	C18-C17-C22	118.8 (1)
C3-C4-C9	$130 \cdot 1$ (2)	C18-C19-C20	120.3 (1)
C3-C23-C24	121.9 (2)	C19-C20-C21	$120 \cdot 2$ (2)
C3-C23-C28	119.7 (2)	C20-C21-C22	120.1 (2)
C4-C3-C23	123.7 (1)	C23-C24-C25	120.4 (2)
C4-C5-C6	120.1 (1)	C23-C28-C27	120.7 (2)
C4-C9-C8	118.6 (2)	C24-C23-C28	118.5 (2)
C5-C1-C10	131.4 (2)	C24-C25-C26	120.3 (2)
C5-C4-C9	120.6 (1)	C25-C26-C27	119.8 (2)
C5-C6-C7	118.9 (2)	C26-C27-C28	120.3 (2)

Fig. 1. ORTEP drawing (at 50% probability) of 1-benzylidene-2,3-diphenylindene showing the adopted labeling.

This compound was prepared under the auspices of the late Professor J. J. Zuckerman, formerly of the Department of Chemistry, University of Oklahoma, Norman, OK 73109.

References

Barnes, J. C., Paton, J. D. \& Nicholls, B. H. (1982). Acta Cryst. B38, 1525-1529.
Gieren, A. \& Hahn, C. (1979). Acta Cryst. B35, 1008-1010.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Jens, K.-J. \& Weiss, E. (1984). Chem. Ber. 117, 2469-2478.
Korp, J. D., Bernal, I., Watkins, S. F. \& Fronczek, F. R. (1982). J. Heterocycl. Chem. 19, 459-462.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1989). C45, 826-827

Ethyl 2,3-Bis(trifluoromethyl)-2,3-dihydroindolizine-1-carboxylate

By R. G. Pritchard, R. E. Banks and S. Mohialdin
Department of Chemistry, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, England

(Received 30 September 1988; accepted 10 November 1988)

Abstract. $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~F}_{6} \mathrm{NO}_{2}, \quad M_{r}=327 \cdot 2$, monoclinic, $P 2_{1} / c, a=15 \cdot 144$ (2), $b=14 \cdot 036$ (2), $c=14 \cdot 101$ (2) \AA, $\beta=110.99(1)^{\circ}, \quad V=2798.4 \AA^{3}, \quad Z=8, \quad D_{x}=$ $1.55 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=1328, \lambda($ Mo $K \alpha)=0.71069 \AA$, $\mu=0.110 \mathrm{~mm}^{-1}, \quad T=293 \mathrm{~K}, \quad R=0.054$ for 2533 unique reflexions $[F \geq 3 \sigma(F)$]. The asymmetric unit contains two molecules distinguished only by a minor disorder of one of the ethyl groups. With the exception of the disordered region, bond lengths agree within 1σ, bond angles within 2σ, and torsion angles within 3σ. A short $C-C$ bond $[1.421(5), 1.425(6) \AA]$ links the carboxy and indolizine π systems, thereby forming a dipole, whose poles are situated at the ring N and carboxy 0.

Experimental. The sample was prepared by 1,3-dipolar cycloaddition of N-2,2,2-trifluoroethylpyridiniumtriflate to perfluorobut-2-yne in the presence of triethylamine and chloroform solvent. Purification by column chromatography followed by recrystallization from methylene chloride and methanol yielded crystals suitable for X-ray work.

Crystal dimensions $0.5 \times 0.3 \times 0.2 \mathrm{~mm}$, EnrafNonius CAD-4 diffractometer, graphite-monochromated Mo $K \alpha$ radiation, unit-cell dimensions from
setting angles of 25 accurately centred reflexions $\left(7.5 \leq \theta \leq 8.7^{\circ}\right), \omega-2 \theta$ scan mode, ω scan width $0.70+0.35 \tan \theta\left(^{\circ}\right)$ and scan speed ranging from 0.6 to $5^{\circ} \mathrm{min}^{-1}$ according to the intensity gathered in a pre-scan, $-17 \leq h \leq 15,0 \leq k \leq 16,0 \leq l \leq 16,0 \leq$ $\theta \leq 25^{\circ}, 5404$ reflexions measured, 3691 unique ($R_{\text {int }}$ $=0.011$), 2533 observed $[F \geq 3 \sigma(F)$], intensity standards $(60 \overline{2}, 0 \overline{5} \overline{3}, \overline{1} 1 \overline{5})$ measured every 2.5 h , decay 12%, decay and Lp corrections applied but absorption ignored, MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980) used to solve the phase problem, all non-hydrogen atoms except minor component of disordered atom $\mathrm{C}(14 B)$ [C(15B) 8 (2)\% occupancy] found in Fourier map, remaining atoms, including H , from ΔF synthesis, full-matrix least-squares refinement based on F using $S H E L X 76$ (Sheldrick, 1976) with bond lengths $\mathrm{C}(13 B)-\mathrm{C}(15 B)$ and $\mathrm{C}(13 B)-\mathrm{C}(14 B)$ tied together, final $R=0.054$, $w R=0.045, \quad w=1.9898 /\left[\sigma^{2}(F)+0.0003 F^{2}\right]$, anisotropic thermal parameters for heavier atoms, isotropic for H and $\mathrm{C}(15 B)$. Maximum fluctuation in final ΔF map in range -0.22 to $0.24 \mathrm{e} \AA^{-3}$, maximum Δ / σ $0.060 \quad[x, \quad \mathrm{H}(131 B)]$. Scattering factors from International Tables for X-ray Crystallography (1974), computation carried out on the joint CDC7600/ © 1989 International Union of Crystallography

[^0]: * To whom all correspondence should be addressed.

